Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Extremely metal-poor galaxies: The HI content

M. E. Filho, B. Winkel, J. Sánchez Almeida, J. A. L. Aguerri, R. O. Amorín, Y. Ascasibar, B. G. Elmegreen, D. M. Elmegreen, J. M. Gomes, A. Humphrey, P. Lagos, A. B. Morales-Luis, C. Muñoz-Tuñón, P. Papaderos, J. M. Vílchez

Abstract
Context. Extremely metal-poor (XMP) galaxies are chemically, and possibly dynamically, primordial objects in the local Universe.
Aims. Our objective is to characterize the HI content of the XMP galaxies as a class, using as a reference the list of 140 known local XMPs compiled by Morales-Luis et al. (2011).
Methods. We have observed 29 XMPs, which had not been observed before at 21 cm, using the Effelsberg radio telescope. This information was complemented with HI data published in literature for a further 53 XMPs. In addition, optical data from the literature provided morphologies, stellar masses, star-formation rates and metallicities.
Results. Effelsberg HI integrated flux densities are between 1 and 15 Jy km s-1, while line widths are between 20 and 120 km s-1. HI integrated flux densities and line widths from literature are in the range 0.1–200 Jy km s-1 and 15–150 km s-1, respectively. Of the 10 new Effelsberg detections, two sources show an asymmetric double-horn profile, while the remaining sources show either asymmetric (seven sources) or symmetric (one source) single-peak 21 cm line profiles. An asymmetry in the HI line profile is systematically accompanied by an asymmetry in the optical morphology. Typically, the g-band stellar mass-to-light ratios are ~0.1, whereas the HI gas mass-to-light ratios may be up to two orders of magnitude larger. Moreover, HI gas-to-stellar mass ratios fall typically between 10 and 20, denoting that XMPs are extremely gas-rich. We find an anti-correlation between the HI gas mass-to-light ratio and the luminosity, whereby fainter XMPs are more gas-rich than brighter XMPs, suggesting that brighter sources have converted a larger fraction of their HI gas into stars. The dynamical masses inferred from the HI line widths imply that the stellar mass does not exceed 5% of the dynamical mass, while the HI mass constitutes between 20 and 60% of the dynamical mass. Furthermore, the dark matter mass fraction spans a wide range, but can account, in some cases, for over 65% of the dynamical mass. XMPs are found to be outliers of the mass – and luminosity – metallicity relation, whereby they lack metals for their estimated dynamical mass and luminosity, suggesting the presence of pristine gas. However, they generally follow the luminosity – and baryonic mass Tully-Fisher relation, indicating that the HI gas is partly virialized and contains some rotational support. 60% of the XMP sources show a small velocity offset (10–40 km s-1) between the HI gas and the stellar/nebular component, implying that, in these sources, the HI gas is not tightly coupled to the stars and ionized gas. The effective yields provided by oxygen are often larger than the standard theoretical yields, suggesting that the observed HI gas is relatively metal-free. 80% of the XMP sources present asymmetric optical morphology – 60 XMPs show cometary structure, 11 show two bright star-forming knots and 18 show multiple star-forming regions. Star-formation rates are found to be similar to those typically found in BCDs. However, specific star-formation rates are high, with timescales to double their stellar mass, at the current rate, of typically less than 1 Gyr.
Conclusions. XMP galaxies are among the most gas-rich objects in the local Universe. The observed HI component suggests kinematical disruption and hints at a primordial composition.

Keywords
galaxies: fundamental parameters – radio lines: galaxies – techniques: spectroscopic

Notes
Full Fig. 1, Tables 3–5 are available in electronic form at http://www.aanda.org
Reduced spectra are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A18

Astronomy and Astrophysics
Volume 558, Page A18_1
October 2013

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website