Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Ultra-luminous X-Ray Sources in the Most Metal Poor Galaxies

A. H. Prestwich, M. Tsantaki, A. Zezas, F. Jackson, T. P. Roberts, R. Foltz, T. Linden, V. Kalogera

Abstract
Ultra-luminous X-ray sources (ULX) are X-ray binaries with Lx >1039 erg s–1. The most spectacular examples of ULX occur in starburst galaxies and are now understood to be young, luminous high mass X-ray binaries. The conditions under which ULX form are poorly understood, but recent evidence suggests they may be more common in low metallicity systems. Here we investigate the hypothesis that ULX form preferentially in low metallicity galaxies by searching for ULX in a sample of extremely metal poor galaxies (XMPG) observed with the Chandra X-Ray Observatory. XMPG are defined as galaxies with log(O/H) + 12 < 7.65, or less than 5% solar. These are the most metal-deficient galaxies known, and a logical place to find ULX if they favor metal poor systems. We compare the number of ULX (corrected for background contamination) per unit of star formation (N ULX(SFR)) in the XMPG sample with N ULX(SFR) in a comparison sample of galaxies with higher metallicities taken from the Spitzer Infrared Galaxy Sample. We find that ULX occur preferentially in the metal poor sample with a formal statistical significance of 2.3σ. We do not see strong evidence for a trend in the formation of ULX in the high metallicity sample: above 12+log(O/H) ~ 8.0 the efficiency of ULX production appears to be flat. The effect we see is strongest in the lowest metallicity bin. We discuss briefly the implications of these results for the formation of black holes in low metallicity gas.

Keywords
stars: formation - X-rays: binaries

The Astrophysical Journal
Volume 769, Page 92_1
June 2013

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website