Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

The triggering mechanism and properties of ionized outflows in the nearest obscured quasars

M. Villar Martín, B. H. C. Emonts, A. Humphrey, A. Cabrera Lavers, L. Binette

Abstract
We have identified ionized outflows in the narrow-line region of all but one Sloan Digital Sky Survey type 2 quasars (QSO2) at z≲0.1 (20/21, detection rate 95 per cent), implying that this is a ubiquitous phenomenon in this object class also at the lowest z. The outflowing gas has high densities (ne≳1000 cm−3) and covers a region the size of a few kpc. This implies ionized outflow masses Moutf ∼ (0.3–2.4) × 106 M and mass outflow rates Ṁ< few M yr−1. The triggering mechanism of the outflows is related to the nuclear activity. The QSO2 can be classified into two groups according to the behaviour and properties of the outflowing gas. QSO2 in Group 1 (5/20 objects) show the most extreme turbulence; they have on average higher radio luminosities and higher excess of radio emission. QSO2 in Group 2 (15/20 objects) show less extreme turbulence; they have lower radio luminosities and, on average, lower or no radio excess. We propose that two competing outflow mechanisms are at work: radio jets and accretion disc winds. Radio jet induced outflows are dominant in Group 1, while disc winds dominate in Group 2. We find that the radio jet mode is capable of producing more extreme outflows. To test this interpretation, we predict that (1) high resolution radio imaging will reveal the presence of jets in Group 1 QSO2; (2) the morphology of their extended ionized nebulae must be more highly collimated and kinematically perturbed.

Keywords
galaxies: active - quasars: emission lines - quasars: general

Monthly Notices of the Royal Astronomical Society
Volume 440, Page 3202
June 2014

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website