Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Li abundances in F stars: planets, rotation, and Galactic evolution

E. Delgado Mena, S. Bertrán de Lis, V. Zh. Adibekyan, S. G. Sousa, P. Figueira, A. Mortier, J. I. González Hernández, M. Tsantaki, G. Israelian, N. C. Santos

Abstract
Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities.
Methods.
We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs. The abundances are derived by a standard local thermodynamic equilibrium analysis using spectral synthesis with the code MOOG and a grid of Kurucz ATLAS9 atmospheres.
Results.
We find that hot jupiter host stars within the Teff range 5900–6300 K show lower Li abundances, by 0.14 dex, than stars without detected planets. This offset has a significance at the level 7σ, pointing to a stronger effect of planet formation on Li abundances when the planets are more massive and migrate close to the star. However, we also find that the average vsini of (a fraction of) stars with hot jupiters is higher on average than for single stars in the same Teff region, suggesting that rotational-induced mixing (and not the presence of planets) might be the cause for a greater depletion of Li. We confirm that the mass-metallicity dependence of the Li dip is extended towards [Fe/H] ~ 0.4 dex (beginning at [Fe/H] ~−0.4 dex for our stars) and that probably reflects the mass-metallicity correlation of stars of the same Teff on the main sequence. We find that for the youngest stars (<1.5 Gyr) around the Li dip, the depletion of Li increases with vsini values, as proposed by rotationally-induced depletion models. This suggests that the Li dip consists of fast rotators at young ages whereas the most Li-depleted old stars show lower rotation rates (probably caused by the spin-down during their long lifes). We have also explored the Li evolution with [Fe/H] taking advantage of the metal-rich stars included in our sample. We find that Li abundance reaches its maximum around solar metallicity, but decreases in the most metal-rich stars, as predicted by some models of Li Galactic production.

Keywords
stars: abundances, stars: fundamental parameters, stars: rotation, stars: evolution, planets and satellites: formation, planetary systems

Astronomy and Astrophysics
Volume 576, Page A69
April 2015

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website