Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

New insights into the stellar content and physical conditions of star-forming galaxies at z = 2–3 from spectral modelling

J. Brinchmann, M. Pettini, S. Charlot

Abstract
We have used extensive libraries of model and empirical galaxy spectra [assembled, respectively, from the population synthesis code of Bruzual and Charlot and the fourth data release of the Sloan Digital Sky Survey (SDSS)] to interpret some puzzling features seen in the spectra of high-redshift star-forming galaxies. We show that a stellar He II λ1640 emission line, produced in the expanding atmospheres of Of andWolf–Rayet stars, should be detectable with an equivalent width of 0.5–1.5Å in the integrated spectra of star-forming galaxies, provided the metallicity is greater than about half solar. Our models reproduce the strength of the He II λ1640 line measured in the spectra of Lyman-break galaxies for established values of their metallicities. With better empirical calibrations in local galaxies, this spectral feature has the potential of becoming a useful diagnostic of massive star winds at high, as well as low redshifts.
We also uncover a relationship in SDSS galaxies between their location in the [O III]/Hβ versus [N II]/Hα diagnostic diagram (the BPT diagram) and their excess specific star formation rate relative to galaxies of similar mass. We infer that an elevated ionization parameter U is at the root of this effect, and propose that this is also the cause of the offset of high-redshift star-forming galaxies in the BPT diagram compared to local ones. We further speculate that higher electron densities and escape fractions of hydrogen ionizing photons may be the factors responsible for the systematically higher values ofUin theHII regions of high-redshift galaxies. The impact of such differences on abundance determinations from strong nebular lines are considered and found to be relatively minor.

Monthly Notices of the Royal Astronomical Society
Volume 385, Page 769
April 2008

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website