Mapa do Site
Contactos
Siga-nos no Facebook Siga-nos no Twitter Canal YouTube
Centro de Astrofísica da Universidade do Porto

Evidence for a spectroscopic direct detection of reflected light from 51 Pegasi b

J. H. C. Martins, N. C. Santos, P. Figueira, J. P. Faria, M. Montalto, I. Boisse, D. Ehrenreich, C. Lovis, M. Mayor, C. Melo, F. Pepe, S. G. Sousa, S. Udry, D. Cunha

Resumo
Context. The detection of reflected light from an exoplanet is a difficult technical challenge at optical wavelengths. Even though this signal is expected to replicate the stellar signal, not only is it several orders of magnitude fainter, but it is also hidden among the stellar noise.
Aims.
We apply a variant of the cross-correlation technique to HARPS observations of 51 Peg to detect the reflected signal from planet 51 Peg b.
Methods.
Our method makes use of the cross-correlation function (CCF) of a binary mask with high-resolution spectra to amplify the minute planetary signal that is present in the spectra by a factor proportional to the number of spectral lines when performing the cross correlation. The resulting cross-correlation functions are then normalized by a stellar template to remove the stellar signal. Carefully selected sections of the resulting normalized CCFs are stacked to increase the planetary signal further. The recovered signal allows probing several of the planetary properties, including its real mass and albedo.
Results.
We detect evidence for the reflected signal from planet 51 Peg b at a significance of 3σnoise. The detection of the signal permits us to infer a real mass of 0.46+0.06-0.01 MJup (assuming a stellar mass of 1.04 MSun) for the planet and an orbital inclination of 80+10-19 degrees. The analysis of the data also allows us to infer a tentative value for the (radius-dependent) geometric albedo of the planet. The results suggest that 51Peg b may be an inflated hot Jupiter with a high albedo (e.g., an albedo of 0.5 yields a radius of 1.9 ± 0.3 RJup for a signal amplitude of 6.0 ± 0.4 × 10-5).
Conclusions.
We confirm that the method we perfected can be used to retrieve an exoplanet’s reflected signal, even with current observing facilities. The advent of next generation of instruments (e.g. VLT-ESO/ESPRESSO) and observing facilities (e.g. a new generation of ELT telescopes) will yield new opportunities for this type of technique to probe deeper into exoplanets and their atmospheres.

Palavras chave
planetary systems – planets and satellites: detection – techniques: spectroscopic – techniques: radial velocities

Astronomy and Astrophysics
Volume 576, Página A134_1
abril 2015

>> PDF>> ADS>> DOI

Instituto de Astrofísica e Ciências do Espaço

O Instituto de Astrofísica e Ciências do Espaço é (IA) é uma nova, mas muito aguardada, estrutura de investigação com uma dimensão nacional. Ele concretiza uma visão ousada, mas realizável para o desenvolvimento da Astronomia, Astrofísica e Ciências Espaciais em Portugal, aproveitando ao máximo e realizando plenamente o potencial criado pela participação nacional na Agência Espacial Europeia (ESA) e no Observatório Europeu do Sul (ESO). O IA é o resultado da fusão entre as duas unidades de investigação mais proeminentes no campo em Portugal: o Centro de Astrofísica da Universidade do Porto (CAUP) e o Centro de Astronomia e Astrofísica da Universidade de Lisboa (CAAUL). Atualmente, engloba mais de dois terços de todos os investigadores ativos em Ciências Espaciais em Portugal, e é responsável por uma fração ainda maior da produtividade nacional em revistas internacionais ISI na área de Ciências Espaciais. Esta é a área científica com maior fator de impacto relativo (1,65 vezes acima da média internacional) e o campo com o maior número médio de citações por artigo para Portugal.

Continuar no sítio do CAUP|Seguir para o sítio do IA