Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

The GAPS programme with HARPS-N at TNG
V. A comprehensive analysis of the XO-2 stellar and planetary systems

M. Damasso, K. Biazzo, A. S. Bonomo, S. Desidera, A. F. Lanza, V. Nascimbeni, M. Esposito, G. Scandariato, A. Sozzetti, R. Cosentino, R. Gratton, L. Malavolta, M. Rainer, D. Gandolfi, E. Poretti, R. Zanmar Sanchez, I. Ribas, N. C. Santos, L. Affer, G. Andreuzzi, M. Barbieri, L. Bedin, S. Benatti, A. Bernagozzi, E. Bertolini, M. Bonavita, F. Borsa, L. Borsato, W. Boschin, P. Calcidese, A. Carbognani, D. Cenadelli, J. M. Christille, R. Claudi, E. Covino, A. Cunial, P. Giacobbe, V. Granata, H. Avet, M. Lattanzi, G. Leto, M. Libralato, G. Lodato, V. Lorenzi, L. Mancini, A. F. Martinez Fiorenziano, F. Marzari, S. Masiero, G. Micela, E. Molinari, M. Molinaro, U. Munari, S. Murabito, I. Pagano, M. Pedani, G. Piotto, A. Rosenberg, R. Silvotti, J. Southworth

Abstract
Aims. XO-2 is the first confirmed wide stellar binary system where the almost twin components XO-2N and XO-2S have planets, and it is a peculiar laboratory in which to investigate the diversity of planetary systems. This stimulated a detailed characterization study of the stellar and planetary components based on new observations.
Methods.
We collected high-resolution spectra with the HARPS-N spectrograph and multi-band light curves. Spectral analysis led to an accurate determination of the stellar atmospheric parameters and characterization of the stellar activity, and high-precision radial velocities of XO-2N were measured. We collected 14 transit light curves of XO-2Nb used to improve the transit parameters. Photometry provided accurate magnitude differences between the stars and a measure of their rotation periods.
Results.
The iron abundance of XO-2N was found to be +0.054 dex greater, within more than 3σ, than that of XO-2S. The existence of a long-term variation in the radial velocities of XO-2N is confirmed, and we detected a turnover with respect to previous measurements. We suggest the presence of a second massive companion in an outer orbit or the stellar activity cycle as possible causes of the observed acceleration. The latter explanation seems more plausible with the present dataset. We obtained an accurate value of the projected spin-orbit angle for the XO-2N system (λ = 7° ± 11°), and estimated the real 3D spin-orbit angle (ψ = 27+12-27 degrees). We measured the XO-2 rotation periods, and found a value of P = 41.6 ± 1.1 days in the case of XO-2N, in excellent agreement with the predictions. The period of XO-2S appears shorter, with an ambiguity between 26 and 34.5 days that we cannot solve with the present dataset alone. The analysis of the stellar activity shows that XO-2N appears to be more active than the companion, perhaps because we sampled different phases of their activity cycle, or because of an interaction between XO-2N and its hot Jupiter that we could not confirm.

Keywords
stars: individual: XO-2 – stars: fundamental parameters – stars: abundances – planetary systems – techniques: radial velocities – techniques: photometric

Astronomy and Astrophysics
Volume 575, Page A111_1
March 2015

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website