Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument

R. G. Petrov, F. Malbet, G. Weigelt, P. Antonelli, U. Beckmann, Y. Bresson, A. Chelli, , G. Duvert, S. Gennari, P. Kern, , S. Lagarde, E. Le Coarer, F. Lisi, F. Millour, K. Perraut, P. Puget, S. Robbe-Dubois, A. Roussel, , P. Salinari, E. Tatulli, G. Zins, M. Accardo, B. Acke, K. Agabi, E. Altariba, B. Arezki, E. Aristidi, C. Baffa, J. Behrend, S. Bonhomme, S. Busoni, F. Cassaing, , J.-M. Clausse, J. Colin, C. Connot, A. Domiciano de Sousa Jr., T. Driebe, P. Feautrier, D. Ferruzzi, , T. Forveille, E. Fossat, R. Foy, D. Fraix-Burnet, A. Gallardo, E. Giani, C. Gil, A. Glentzlin, M. Heiden, M. Heininger, O. Hernandez, K.-H. Hofmann, D. Kamm, M. Kiekebusch, S. Kraus, D. Le Contel, J.-M Le Contel, T. Lesourd, B. Lopez, M. Lopez, Y. Magnard, A. Marconi, G. Mars, G. Martinot-Lagarde, P. Mathias, J.-L. Monin, D. Mouillet, D. Mourard, E. Nussbaum, K. Ohnaka, J. Pacheco, C. Perrier, Y. D. Rabbia, S. Rebattu, F. Reynaud, A. Richichi, A. Robini, M. Sacchettini, D. Schertl, W. Solscheid, A. Spang, P. Stee, P. Stefanini, M. Tallon, I. Tallon-Bosc, D. Tasso, L. Testi, F. Vakili, J.-C. Valtier, M. Vannier, N. Ventura

Context. Optical long-baseline interferometry is moving a crucial step forward with the advent of general-user scientific instruments that equip large aperture and hectometric baseline facilities, such as the Very Large Telescope Interferometer (VLTI).
Aims. AMBER is one of the VLTI instruments that combines up to three beams with low, moderate and high spectral resolutions in order to provide milli-arcsecond spatial resolution for compact astrophysical sources in the near-infrared wavelength domain. Its main specifications are based on three key programs on young stellar objects, active galactic nuclei central regions, masses, and spectra of hot extra-solar planets.
Methods. These key science goals led to scientific specifications, which were used to propose and then validate the instrument concept. AMBER uses single-mode fibers to filter the entrance signal and to reach highly accurate, multiaxial three-beam combination, yielding three baselines and a closure phase, three spectral dispersive elements, and specific self-calibration procedures.
Results. The AMBER measurements yield spectrally dispersed calibrated visibilities, color-differential complex visibilities, and a closure phase allows astronomers to contemplate rudimentary imaging and highly accurate visibility and phase differential measurements. AMBER was installed in 2004 at the Paranal Observatory.We describe here the present implementation of the instrument in the configuration with which the astronomical community can access it.
Conclusions. After two years of commissioning tests and preliminary observations, AMBER has produced its first refereed publications, allowing assessment of its scientific potential.

Astronomy and Astrophysics
Volume 464, Page 1
February 2007

>> PDF>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website