Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Observational evidence for a broken Li Spite plateau and mass-dependent Li depletion

J. Meléndez, L. Casagrande, I. Ramírez, M. Asplund, W. J. Schuster

We present NLTE Li abundances for 88 stars in the metallicity range -3.5 < [Fe/H] < -1.0. The effective temperatures are based on the infrared flux method with improved E(B - V) values obtained mostly from interstellar Na I D lines. The Li abundances were derived through MARCS models and high-quality UVES+VLT, HIRES+Keck and FIES+NOT spectra, and complemented with reliable equivalent widths from the literature. The less-depleted stars with [Fe/H]< -2.5 and [Fe/H] > -2.5 fall into two well-defined plateaus of ALi = 2.18 (σ = 0.04) and ALi = 2.27 (σ = 0.05), respectively. We show that the two plateaus are flat, unlike previous claims for a steep monotonic decrease in Li abundances with decreasing metallicities. At all metallicities we uncover a fine-structure in the Li abundances of Spite plateau stars, which we trace to Li depletion that depends on both metallicity and mass. Models including atomic diffusion and turbulent mixing seem to reproduce the observed Li depletion assuming a primordial Li abundance ALi = 2.64, which agrees well with current predictions (ALi = 2.72) from standard Big Bang nucleosynthesis. Adopting the Kurucz overshooting model atmospheres increases the Li abundance by +0.08 dex to ALi = 2.72, which perfectly agrees with BBN+WMAP.

nuclear reactions, nucleosynthesis, abundances - cosmology: observations - stars: abundances - stars: Population II

Based in part on observations obtained at the W. M. Keck Observatory, the Nordic Optical Telescope on La Palma, and on data from the HIRES/Keck archive and the European Southern Observatory ESO/ST-ECF Science Archive Facility.
Table 1 is only available in electronic form at

Astronomy and Astrophysics
Volume 515, Page L3_1
June 2010

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website