Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

The Earth as an extrasolar transiting planet
Earth's atmospheric composition and thickness revealed by Lunar eclipse observations

A. Vidal-Madjar, L. Arnold, D. Ehrenreich, R. Ferlet, A. Lecavelier Des Etangs, F. Bouchy, D. Ségransan, I. Boisse, G. Hébrard, C. Moutou, J.-M. Désert, D. K. Sing, R. Cabanac, C. Nitschelm, X. Bonfils, X. Delfosse, M. Desort, R. F. Díaz, A. Eggenberger, T. Forveille, A.-M. Lagrange, C. Lovis, F. Pepe, C. Perrier, F. Pont, N. C. Santos, S. Udry

Context. An important goal within the quest for detecting an Earth-like extrasolar planet, will be to identify atmospheric gaseous bio-signatures.
Aims. Observations of the light transmitted through the Earth’s atmosphere, as for an extrasolar planet, will be the first important step for future comparisons. We have completed observations of the Earth during a lunar eclipse, a unique situation similar to that of a transiting planet. We aim at showing what species could be detected in its atmosphere at optical wavelengths, where a lot of photons are available in the masked stellar light.
Methods. We present observations of the 2008 August 16 Moon eclipse performed with the SOPHIE spectrograph at the Observatoire de Haute-Provence (France). Locating the spectrograph’s fibers in the penumbra of the eclipse, the Moon irradiance is then a mix of direct, unabsorbed Sun light and solar light that has passed through the Earth’s atmosphere. This mixture essentially reproduces what is recorded during the transit of an extrasolar planet.
Results. We report here the clear detection of several Earth atmospheric compounds in the transmission spectra, such as ozone, molecular oxygen, and neutral sodium as well as molecular nitrogen and oxygen through the Rayleigh signature. Moreover, we present a method that allows us to derive the thickness of the atmosphere versus the wavelength for penumbra eclipse observations. We quantitatively evaluate the altitude at which the atmosphere becomes transparent for important species like molecular oxygen and ozone, two species thought to be tightly linked to the presence of life.
Conclusions. The molecular detections presented here are an encouraging first attempt, necessary to better prepare for the future of extremely-large telescopes and transiting Earth-like planets. Instruments like SOPHIE will be mandatory when characterizing the atmospheres of transiting Earth-like planets from the ground and searching for bio-marker signatures.

eclipses - Earth - planets and satellites: atmospheres - astrobiology - techniques: spectroscopic - methods: observational

Detailed observations as shown in Figs. 9-12 are only available in electronic form at the CDS via anonymous ftp to ( or via

Astronomy and Astrophysics
Volume 523, Page A57_1
November 2010

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website