Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Deriving the radial-velocity variations induced by stellar activity from high-precision photometry
Test on HD 189733 with simultaneous MOST/SOPHIE data

A. F. Lanza, I. Boisse, F. Bouchy, A. S. Bonomo, C. Moutou

Abstract
Context. Stellar activity induces apparent radial velocity (RV) variations in late-type main-sequence stars that may hamper the detection of low-mass planets and the measurement of their mass.
Aims. We use simultaneous measurements of the active planet host star HD 189733 with high-precision optical photometry by the MOST satellite and high-resolution spectra by SOPHIE.We apply on this unique dataset a spot model to predict the activity-induced RV variations and compare them with the observed ones.
Methods. The model is based on the rotational modulation of the stellar flux. A maximum entropy regularization is applied to find a unique and stable solution for the distribution of the active regions versus stellar longitude. The RV variations are synthesized considering the effects on the line profiles of the brightness perturbations due to dark spots and bright faculae and the reduction of the convective blueshifts in the active regions.
Results. The synthesized RV time series shows a remarkably good agreement with the observed one although variations on timescales shorter than 4–5 days cannot be reproduced by our model. Persistent active longitudes are revealed by the spot modelling. They rotate with slightly different periods yielding a minimum relative amplitude of the differential rotation of ΔΩ/Ω = 0.23 ± 0.10. Moreover, several active regions with an evolution timescale of 2–5 days and an area of 0.1–0.3 percent of the stellar disc are detected.
Conclusions. The method proves capable of reducing the power of the activity-induced RV variations by a factor from 2 to 10 at the rotation frequency and its harmonics up to the third. Thanks to the high-precision space-borne photometry delivered by CoRoT, Kepler, or later PLATO, it is possible to map the longitudinal distribution of active regions in late-type stars and apply the method presented in this paper to reduce remarkably the impact of stellar activity on their RV jitter allowing us to confirm the detection of low-mass planets or refine the measurement of their mass.

Keywords
stars: late-type – planetary systems – stars: activity – stars: rotation – techniques: radial velocities – stars: individual: HD 189733

Astronomy and Astrophysics
Volume 533, Page A44_1
September 2011

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website