Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Comparing radial velocities of atmospheric lines with radiosonde measurements

P. Figueira, F. Kerber, A. Chacón, C. Lovis, N. C. Santos, G. Lo Curto, M. Sarazin, F. Pepe

The precision of radial velocity (RV) measurements depends on the precision attained on the wavelength calibration. One of the available options is using atmospheric lines as a natural, freely available wavelength reference. Figueira et al. (2010) measured the RV of O2 lines using HARPS and showed that the scatter was only of ∼10 m/s over a timescale of 6 yr. Using a simple but physically motivated empirical model, they demonstrated a precision of 2 m/s, roughly twice the average photon noise contribution. In this paper we take advantage of a unique opportunity to confirm the sensitivity of the telluric absorption lines RV to different atmospheric and observing conditions: by means of contemporaneous in-situ wind measurements. This opportunity is a result of the work done during site testing and characterization for the European Extremely Large Telescope (E-ELT). The HARPS spectrograph was used to monitor telluric standards while contemporaneous atmospheric data was collected using radiosondes. We quantitatively compare the information recovered by the two independent approaches.
The RV model fitting yielded similar results to that of Figueira et al. (2010), with lower wind magnitude values and varied wind direction. The probes confirmed the average low wind magnitude and suggested that the average wind direction is a function of time as well. However, these results are affected by large uncertainty bars that probably result from a complex wind structure as a function of height. The two approaches deliver the same results in what concerns wind magnitude and agree on wind direction when fitting is done in segments of a couple of hours. Statistical tests show that the model provides a good description of the data on all timescales, being always preferable to not fitting any atmospheric variation. The smaller the timescale on which the fitting can be performed (down to a couple of hours), the better the description of the real physical parameters. We conclude then that the two methods deliver compatible results, down to better than 5 m/s and less than twice the estimated photon noise contribution on O2 lines RV measurement. However, we cannot rule out that parameters α and γ (dependence on airmass and zero-point, respectively) have a dependence on time or exhibit some cross-talk with other parameters, an issue suggested by some of the results.

atmospheric effects - instrumentation: spectrographs - methods: observational - techniques: radial velocities

Monthly Notices of the Royal Astronomical Society
Volume 420, Page 2874
March 2012

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website