Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Oscillation mode linewidths of main-sequence and subgiant stars observed by Kepler

T. Appourchaux, O. Benomar, M. Gruberbauer, W. J. Chaplin, R. A. García, R. Handberg, G. A. Verner, H. M. Antia, T. L. Campante, G. R. Davies, S. Deheuvels, S. Hekker, R. Howe, D. Salabert, T. R. Bedding, T. R. White, G. Houdek, V. Silva Aguirre, Y. Elsworth, J. Van Cleve, B. D. Clarke, J. R. Hall, H. Kjeldsen

Abstract
Context. Solar-like oscillations have been observed by Kepler and CoRoT in several solar-type stars.
Aims. We study the variations of stellar p-mode linewidth as a function of effective temperature.
Methods. Time series of 9 months of Kepler data have been used. The power spectra of 42 cool main-sequence stars and subgiants have been analysed using both Maximum Likelihood Estimators and Bayesian estimators, providing individual mode characteristics such as frequencies, linewidths and mode heights.
Results. Here we report on the mode linewidth at maximum power and at maximum mode height for these 42 stars as a function of effective temperature.
Conclusions. We show that the mode linewidth at either maximum mode height or maximum amplitude follows a scaling relation with effective temperature, which is a combination of a power law plus a lower bound. The typical power law index is about 13 for the linewidth derived from the maximum mode height, and about 16 for the linewidth derived from the maximum amplitude while the lower bound is about 0.3 µHz and 0.7 µHz, respectively. We stress that this scaling relation is only valid for the cool main-sequence stars and subgiants, and does not have predictive power outside the temperature range of these stars.

Keywords
methods: data analysis – asteroseismology – stars: solar-type

Astronomy and Astrophysics
Volume 537, Page A134_1
January 2012

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website