Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Seismic constraints on rotation of Sun-like star and mass of exoplanet

L. Gizon, J. Ballot, E. Michel, T. Stahn, G. Vauclair, H. Bruntt, P.-O. Quirion, O. Benomar, S. Vauclair, T. Appourchaux, M. Auvergne, A. Baglin, C. Barban, F. Baudin, M. Bazot, T. L. Campante, C. Catala, W. J. Chaplin, O. L. Creevey, S. Deheuvels, N. Dolez, Y. Elsworth, R. A. García, P. Gaulme, S. Mathis, S. Mathur, B. Mosser, C. Régulo, I. W. Roxburgh, D. Salabert, R. Samadi, K. H. Sato, G. A. Verner, S. Hanasoge, K. R. Sreenivasan

Abstract
Rotation is thought to drive cyclic magnetic activity in the Sun and Sun-like stars. Stellar dynamos, however, are poorly understood owing to the scarcity of observations of rotation and magnetic fields in stars. Here, inferences are drawn on the internal rotation of a distant Sun-like star by studying its global modes of oscillation. We report asteroseismic constraints imposed on the rotation rate and the inclination of the spin axis of the Sun-like star HD 52265, a principal target observed by the CoRoT satellite that is known to host a planetary companion. These seismic inferences are remarkably consistent with an independent spectroscopic observation (rotational line broadening) and with the observed rotation period of star spots. Furthermore, asteroseismology constrains the mass of exoplanet HD 52265b. Under the standard assumption that the stellar spin axis and the axis of the planetary orbit coincide, the minimum spectroscopic mass of the planet can be converted into a true mass of 1.85+0.52-0.42MJupiter, which implies that it is a planet, not a brown dwarf.

Keywords
extrasolar planets - stellar oscillations - stellar rotation

Proceedings of the National Academy of Sciences
Volume 110, Page 13267
August 2013

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website