Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Transiting exoplanets from the CoRoT space mission
XXVI. CoRoT-24: a transiting multiplanet system

R. Alonso, C. Moutou, M. Endl, J.-M. Almenara, E. W. Guenther, M. Deleuil, A. Hatzes, S. Aigrain, M. Auvergne, A. Baglin, P. Barge, A. S. Bonomo, P. Bordé, F. Bouchy, C. Cavarroc, J. Cabrera, S. Carpano, Sz. Csizmadia, W. D. Cochran, H. J. Deeg, R. F. Díaz, R. Dvorak, A. Erikson, S. Ferraz-Mello, M. Fridlund, T. Fruth, D. Gandolfi, M. Gillon, S. Grziwa, T. Guillot, G. Hébrard, L. Jorda, A. Léger, H. Lammer, C. Lovis, P. J. MacQueen, T. Mazeh, A. Ofir, M. Ollivier, T. Pasternacki, M. Pätzold, D. Queloz, H. Rauer, D. Rouan, A. Santerne, J. Schneider, M. Tadeu dos Santos, B. Tingley, R. Titz-Weider, J. Weingrill, G. Wuchterl

Abstract
We present the discovery of a candidate multiply transiting system, the first one found in the CoRoT mission. Two transit-like features with periods of 5.11 and 11.76 d are detected in the CoRoT light curve around a main sequence K1V star of r = 15.1. If the features are due to transiting planets around the same star, these would correspond to objects of 3.7 ± 0.4 and 5.0 ± 0.5 R , respectively. Several radial velocities serve to provide an upper limit of 5.7 M for the 5.11 d signal and to tentatively measure a mass of 28+11-11 M for the object transiting with a 11.76 d period. These measurements imply low density objects, with a significant gaseous envelope. The detailed analysis of the photometric and spectroscopic data serves to estimate the probability that the observations are caused by transiting Neptune-sized planets as much as over 26 times higher than a blend scenario involving only one transiting planet and as much as over 900 times higher than a scenario involving two blends and no planets. The radial velocities show a long-term modulation that might be attributed to a 1.5 MJup planet orbiting at 1.8 AU from the host, but more data are required to determine the precise orbital parameters of this companion.

Keywords
planetary systems – techniques: photometric – techniques: radial velocities – techniques: spectroscopic

Astronomy and Astrophysics
Volume 567, Page A112_1
July 2014

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website