Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

Anti-aliasing Wiener filtering for wave-front reconstruction in the spatial-frequency domain for high-order astronomical adaptive-optics systems

C. M. Correia, J. A. C. Teixeira

Abstract
Computationally-efficient wave-front reconstruction techniques for astronomical adaptive optics systems have seen a great development in the past decade. Algorithms developed in the spatial-frequency (Fourier) domain have gathered large attention specially for high-contrast imaging systems. In this paper we present the Wiener filter (resulting in the maximization of the Strehl-ratio) and further develop formulae for the anti-aliasing Wiener filter that optimally takes into account high-order wave-front terms folded in-band during the sensing (i.e. discrete sampling) process. We employ a continuous spatial-frequency representation for the forward measurement operators and derive the Wiener filter when aliasing is explicitly taken into account. We further investigate and compare to classical estimates using least-squares filters the reconstructed wave-front, measurement noise and aliasing propagation coefficients as a function of the system order. Regarding high-contrast systems, we provide achievable performance results as a function of an ensemble of for ward models for the Shack-Hartmann wave-front sensor (using sparse and non-sparse representations) and compute point-spread function raw intensities. We find that for a 32x32 single-conjugated adaptive optics system the aliasing propagation coefficient is roughly 60% of the least-squares filters whereas the noise propagation is around 80%. Contrast improvements of factors of up to 2 are achievable across the field in H-band. For current and next generation high-contrast imagers, despite better aliasing mitigation, anti-aliasing Wiener filtering cannot be used as a stand-alone method and must therefore be used in combination with optical spatial filters deployed before image formation takes actual plac

Journal of the Optical Society of America A
Volume 31, Page 2763
December 2014

>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website