Site Map
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

An Ancient Extrasolar System with Five Sub-Earth-size Planets

T. L. Campante, T. Barclay, J. J. Swift, D. Huber, V. Zh. Adibekyan, W. D. Cochran, C. Burke, H. Isaacson, E. V. Quintana, G. R. Davies, V. Silva Aguirre, D. Ragozzine, R. Riddle, C. Baranec, S. Basu, W. J. Chaplin, J. Christensen-Dalsgaard, T. S. Metcalfe, T. R. Bedding, R. Handberg, D. Stello, J. M. Brewer, S. Hekker, C. Karoff, R. Kolbl, N. M. Law, M. Lundkvist, A. Miglio, J. F. Rowe, N. C. Santos, C. Van Laerhoven, T. Arentoft, Y. Elsworth, D. A. Fischer, S. D. Kawaler, H. Kjeldsen, M. N. Lund, G. W. Marcy, S. G. Sousa, A. Sozzetti, T. R. White

The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

Galaxy: disk, planetary systems, stars: individual: HIP 94931, stars: late-type, stars: oscillations, techniques: photometric

The Astrophysical Journal
Volume 799, Page 170
January 2015

>> PDF>> ADS>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website