Site Map
Contacts
Follow us on Facebook Follow us on Twitter YouTube channel
Centro de Astrofísica da Universidade do Porto

An unbiased search for the signatures of protostars in the ρ Ophiuchi molecular cloud
II. Millimetre continuum observations

T. Stanke, M. D. Smith, R. Gredel, T. Khanzadyan

Abstract
The dense cores which conceive and cradle young stars can be explored through continuum emission from associated dust grains. We have performed a wide field survey for dust sources at 1.2 millimetres in the ρ Ophiuchi molecular cloud, covering more than 1 square degree in an unbiased fashion. We detect a number of previously unknown sources, ranging from extended cores over compact, starless cores to envelopes surrounding young stellar objects of Class 0, Class I, and Class II type. We analyse the mass distribution, spatial distribution and the potential equilibrium of the cores. For the inner regions, the survey results are consistent with the findings of previous narrower surveys. The core mass function resembles the stellar initial mass function, with the core mass function shifted by a factor of two to higher masses (for the chosen opacity and temperature). In addition, we find no statistical variation in the core mass function between the crowded inner regions and those in more isolated fields except for the absence of the most massive cores in the extended cloud. The inner region contains compacter cores. This is interpreted as due to a medium of higher mean pressure although strong pressure variations are evident in each region. The cores display a hierarchical spatial distribution with no preferred separation scale length. However, the frequency distribution of nearest neighbours displays two peaks, one of which at 5000 AU can be the result of core fragmentation. The orientations of the major axes of cores are consistent with an isotropic distribution. In contrast, the relative orientations of core pairs are preferentially in the NW-SE direction on all separation scales. These results are consistent with core production and evolution in a turbulent environment. Finally, we report the discovery of a new, low-mass Class 0 object candidate and its CO outflow.

Astronomy and Astrophysics
Volume 447, Page 609
July 2006

>> PDF>> DOI

Institute of Astrophysics and Space Sciences

Institute of Astrophysics and Space Sciences (IA) is a new but long anticipated research infrastructure with a national dimension. It embodies a bold but feasible vision for the development of Astronomy, Astrophysics and Space Sciences in Portugal, taking full advantage and fully realizing the potential created by the national membership of the European Space Agency (ESA) and the European Southern Observatory (ESO). IA resulted from the merging the two most prominent research units in the field in Portugal: the Centre for Astrophysics of the University of Porto (CAUP) and the Center for Astronomy and Astrophysics of the University of Lisbon (CAAUL). It currently hosts more than two-thirds of all active researchers working in Space Sciences in Portugal, and is responsible for an even greater fraction of the national productivity in international ISI journals in the area of Space Sciences. This is the scientific area with the highest relative impact factor (1.65 times above the international average) and the field with the highest average number of citations per article for Portugal.

Proceed on CAUP's website|Go to IA website